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Explicit formulas of all equivalent local potentials for a coupled n-channel prob- 
lem are calculated. The general equivalent local potentials constitute a [(~")- 1J- 
complex-parameter family of local potentials. For a definite input elastic channel, 
the uniqueness of the equivalent local potential is shown. The equivalent local 
potential of the Feshbach optical potential coincides with the equivalent local 
potential of the n-channel system. The construction of the Feshbach optical 
potential is a reduction to the dimensionality of the coupled-channel problem, 
the construction of the equivalent local potential is a diagonalization of the 
coupled-channel problem, both constructions are compatible manipulations on 
the set of the coupled-channel system. The properties of the Feshbach optical 
potential can be used for the study of the properties of the equivalent local 
potential. 

1. I N T R O D U C T I O N  

Frequent ly  a nonlocal  potential  is considered as a more  complicated 
entity than a local one, and so different methods  have been investigated 
in order  to construct  an equivalent local potent ial  (ELP)  to the n-channel 
Schr6dinger  equat ion with nonlocal  interactions. The significance o f  the 
equivalence depends on the method  o f  defining the ELP.  

One method  for the single-channel Schr6dinger equat ion was pro-  
posed by Fiedeldey (1967). In this me thod  the constructed ELP  and the 
original nonlocal  potential  have a pair  o f  solutions o f  the cor responding  
Schr6dinger equat ions propor t iona l  to one function. This propor t ional i ty  
funct ion is assumed to be equal to unity far f rom the range o f  the 
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nonlocal potential. This assumption preserves the scattering properties (S- 
matrices, T-matrices,.. .) of the original nonlocal potential. Each pair of 
independent solutions of the single-channel problem corresponds to a 
unique ELP. The Fiedeldey method was used with success in the nucleon- 
nucleon problems (Coz et  al . ,  1970), in the cta  interaction (Saito, 1987), 
and also in the case of the quark cluster interpretation of the NN 
interaction (Pantis, 1987). Mackellar and Coz (1976) studied a generaliza- 
tion of the Fiedeldey method concerning the coupled-channel problem. 
In the coupled-channel problem the number of solutions of the system 
of the Schrtdinger equations is no longer two and there may exist more 
than a unique equivalent local potential. In Section 2 we investigate the 
number of possible ELPs. 

The WKB method for the single-channel equation with a nonlocal 
potential was introduced by Horiuchi (1980). In this method the nonlocal 
potential is replaced by a local one, using the Wigner transform of the 
nonlocal operators. If the approximate equivalent local potential is treated 
by the WKB method, its WKB solutions are proportional to the WKB 
solutions of the original problem with the nonlocal potential. This method 
was successfully used for the quark structure investigations of the NN inter- 
action by Shimizu (1989) and Suzuki and Hecht (1983). The WKB treatment 
of the coupled-channel equation with nonlocal potentials was introduced by 
Yabana and Horiuchi (1984). The WKB method of constructing the single- 
channel equivalent potential was generalized for the coupled-channel 
Schrtdinger equation by Yabana and Horiuchi (1985a,b). In this method, 
the WKB solutions of the coupled-channel problem with nonlocal potentials 
are proportional to the WKB solutions of the equivalent system with local 
potentials. In these papers the WKB-equivalent coupled-channel problem 
contains local potentials which are linearly dependent on the momentum, if 
the nonlocal potentials are not symmetric. 

In Section 2 we study the Fiedeldey-Mackellar-Coz method and give 
explicit expressions for the ELP in the elastic channel. In Section 3 we 
study the properties of the coupled-channel system and examine the relation 
between the Fiedeldey-Mackellar-Coz procedure and the Feshbach optical 
potential. The construction of the ELP is a local diagonalization of the 
nonlocal coupled-channel problem, while the Feshbach procedure is a reduc- 
tion of the dimensionality of the coupled-channel system. This dimensional 
reduction can be applied iteratively and reduces the original coupled-channel 
problem to a single-channel nonlocal problem. We show that the ELP of 
the elastic channel coincides with the ELP of the reduced Feshbach optical 
potentials. So the Fiedeldey-Mackellar-Coz method of constructing ELP is 
compatible with the Feshbach optical potential. In Section 4, we summarize 
our result. 
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2. CONSTRUCTION OF THE EQUIVALENT LOCAL POTENTIAL 

Let us consider now a coupled-channel problem: 

a + A - - , a + A  

~ b + B  

--*c+C 

The a + A channel is called elastic and the rest of channels are treated as 
inelastic ones. This kind of interaction is described by a system of coupled 
integrodifferential equations: 

( d2~r 2 l(l+l))v,(r)-r 2 ~ [Vi,,,(r)-E~gi,.]V,.(r) 
IP I  = 1 

f; = ~ _ U,m(r, r')v,,,(r') dr' (1) 
m = I 

The Fiedeldey-MackeUar-Coz method consists in reducing this equa- 
tion to an equivalent system of uncoupled n Schr6dinger equations with 
local potentials. We start this section by giving a short account of this 
method, for the sake of clarity. 

If {/~g(r)} and {vi(r)}, with i= 1 , . . . ,  n, are an independent pair of 
solutions of the system (1), the "Wronskians" 

Fi(r) =fi2(r) =/z~ v i -  v'Iz~ 

satisfy the system of equations 

dFi= 
V , , , , ( r ) [ l u m ( r ) v i ( r )  - v , , , ( r ) # x i ( r ) ]  

dr m= ] 

f; + ~_ U,,,,(r, r'){/x,,,(r')#x,(r)- v,,,(r')/x,(r)] dr', i= 1 , . . . ,  n (2) 
m = l  

We can define the functions 

gi(r) - #~ ;(') and 
f,(r) 

hi(, ')-  vi(,'), i= 1 , . . . ,  n (3) 
f,(,') 
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These functions constitute a pair of solutions for the system of  equations 

( S  2 l(l~. 1))qbi(r)+zi(r) dq~i(r___~)dr 

= ~ [f.-'(r)V~,,,(r)f,(r)-E~6i, n]c~,,,(r) 

+ 2 Ft 4\-~i] 

+ ~ G. ( r ,  r') r~ 
m = l  , 

where 

(4 )  

where 

1 c~ 
t~=i Or 

The above local potential (6) contains diagonal momentum-dependent 
terms. Notice that in the case of the WKB method the equivalent local 
potentials are also momentum-dependent (Yabana and Horiuchi, 1985a,b), 
but the momentum terms appear in the nondiagonal coupling channel 
potentials vWKB(r), iv~m. Equation (4) can be reduced to a usual 

Iti(r) v,,,(r) v i ( r )  J . lm(r )  zi(r) = ~ Vim(t') (5) 
m = 1 F i  

Equation (4) can be rewritten in a more compact form: 

( d~r2 l(l+ l))dpi(r) +,,~= ELP [ v;,,, (r, ~ )  - E ~ , , . ]  ~,,,(,') = 0 
r 2 1 

where the potential vELt'(r,/~) is a momentum-dependent local operator: 

v ~ ( , ' ,  ~) 

dr 2 F, 4 \ F ; J  2 [X'(')~176 
G,,, 

+f-' (r) V,.,~(r)f,,(r) 

f: + ~ g,k(r, r') - G,,, (6) 
[~:(,-) v~(,.') V: (F ) /~ /k ( r l ) ]  dr' 

k = l .  Ft. 



Equivalent Local Potentials 1207 

Schr6dinger equation without derivatives, even if the local potentials are not 
symmetric. We define the transformation 

exp[" f x,(r) dr] (7) 

After the application of this transformation, the Fiedeldey-Mackellar- 
Coz theory for a coupled-channel problem can be summarized by the follow- 
ing proposition: 

ELP for the Coupled-Channel Problem. If {p,(r)} and {v,(r)}, i= 
1 . . . .  , n are two independent solutions of equation (1), then the functions 

and 

i = l , . . . , n  

are two independent solutions of the Schr6dinger coupled-channel system: 

d l(l-{- 1))lpei(r)  - ~ ELP [v;. (r)-E,~M~,.(r)=O (8) 
r 2 tn ~ | 

where vtELP(r) is given by the following formula: 

exp[�89 x,(r) dr] 

f ( r )  

1 dz% 1 1:,'.' 
+ 2 -~-r 2 F ;  

+f( 'i k=l  

g,,,,(r) exp[-~ f z,.(r) drtf,,(r) 
t 2 

4 

U,~(,', r') ~'(, ')vk(,")- v'(r)~k(r') dr' &.  
F,(r) 

After a little algebra we find 

v , 7 . ~ ( r )  = 
exp[�89 S z,(r) dr] V,,,,(r) f(r) 
• f x,.(r) dr]f.(")+ 

(9) 

(IO) 
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v~'~(,-) =-~  ,,V / -~ ,,~, 

• I.,/(r) v~(r ' ) -  v'(r) / lk(r ' )  
F,(r) 

+1 ~ ~ au,~(r, r')~,(r)v~(r')- v,(r)~(r') (11) 
230 ~=, Fe(r) 

The nondiagonal term in the ELP (lO) can be eliminated by redefining 
the initial potentials as follows: 

P,,.(,.) =0 (12) 
g',,,,(r, r ') = Ui,,,(r, r') + V, . , (r )a(r-  r') 

This ELP was studied by Mackellar and Coz (1976). 
The most usual coupled channel problem is the one without nonlocal 

terms: 

r2 ~'~(r) - ~ [ V/,,,(r) - E~&,,] g,,(r) = 0 (13) 
m = 1 

In this case the explicit form of the ELP is given by the following 
proposition: 

ELP for a System of  Coupled Local Equations. Let pi(r) and v~(r) be 
two independent solutions of the system (13), with local potentials. Then we 
define 

F,(,') = p](r) Iai(r) i = 1 . . . .  n (14) 
v/(r) v,(r)'  

where the functions ui(r) and wi(r) are defined as follows: 

ui(r)-  pi(r) and w~(r)= vi(r) (15) 
[F,(r)l ' /2 [Fi(r)]'/2 

are two independent solutions of the uncoupled SchrBdinger equation : 

( d  2 1(1+ l))7t,(,.)+[V~U.(r)_E,]g,(r)=O (16) 
d r  2 r 2 
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where v/ELP(r) is the ith channel ELP, given by the formula 

~ , ( r )  ~,,,(,') 2 

3 vi(r) v,,(r) v~LP(r)= - -  y. V,,.(r) 
4 .... j Fi(r) 

[vi(r) /l,-(r) I 
+1_ " d~,,, vi(r) vM(R) 

2,,~=1 dr Fi(r) 

(/~i(") /~,;,(r)l_~/(r) ~t,,,(r)) 
~, \lv,(r) v,'(r) ]v'(r) v,.(r) + V,.,,,(r) (17) Z~ 

,, =l Fi(r) 

These formulas are the explicit forms of the ELP for the local n-channel 
problem. 

The number of the independent solutions of the system (1) or (16) is 
2". From equation (17) we conclude that for each pair of linear independent 
solutions 

v,(r) J,=, ...... 

we can find the ELP vffLP(r), i= 1 . . . . .  n, given by equation (17). The 
solutions (18) are solutions of the coupled-channel problem uniquely deter- 
mined by appropriate boundary conditions. Thus, each ELP depends on the 
boundary conditions imposed on the initial pair of the solutions (18). These 
conditions mean a definition of the initial input elastic channel and asymp- 
totic output conditions for the inelastic channels, as we shall see. 

We can choose (~") pairs of independent solutions of the form (18), 
because the number of the independent solutions of the system (1) is 2". 
These independent pairs can be marked as follows: 

, ,9, 
~o~(,')J,~, ...... ' . . . .  

The general solution of the system (1) can be written as follows: 

F 7 arl-tP(r)] 
, ] / i ( r ) i  = 2 2" (20) 
L vi(r)_l;=, ...... e=,....r P[_ v~(,')J~=, ...... 

where ap are complex numbers. 
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The general form of the ELP can be obtained by replacing the p 's  and 
v's in equation (17) by those given by relation (20). All the components of 
the ELP in equation (14) contain ratios of determinants; thus, without loss 
of generality we can put a~ = 1 and make the following statement. 

Proposition 1. The set of possible equivalent potentials is parametrized 
by (2,) _ 1 independent complex parameters ap, p = 2 , . . . ,  (~'). 

In the case of the single-channel problem system (n = 1), two indepen- 
dent solutions exist, so there is only one ELP, not depending on the initial 
conditions. In the case of the multi-channel problems, the situation appears 
more complicated. 

Usually the coupled-channel Schr6dinger equation describes the reac- 
tions with many output (inelastic) channels but only one input (elastic) 
channel. The particles in an (output) inelastic channel move out the center 
of the interaction and they behave as independent particles after a sufficiently 
large time. Let i--- 1 be the elastic channel and i= 2 . . . .  , n be the output 
inelastic channels. In this case the boundary conditions imposed on all the 
inelastic channels are 

Ilti(r),~exp(ikir) if r ~  oo, k i=x/~i ,  i=2  . . . . .  n (21) 

If the above restriction is imposed, the number of the independent solutions 
of the system (1) is exactly two. If there are Coulomb potentials in the 
channel potentials V~j(r), then the exponential function in equation (1) must 
be replaced by the corresponding asymptotic form of the Coulomb function. 
Therefore we can make the following statement. 

Proposition 2. In the multichannel problem 

a + A - - . a + A  

- . b +  B 

~ c + C  

- - - ) ' . .  , 

for a given elastic channel a + A, only one ELP, corresponding to outgoing 
waves in the inelastic channels (b + B, c + C, . . . ) ,  can be found. 

The asymptotic condition (21) could be satisfied if the coupling poten- 
tials Vi,,,(r), Ui,,,(r, r'), iv~m, have a finite range R, which means that these 
potentials are zero for r>  R. In the theory of nuclear interactions the basic 
interactions are the Coulomb interaction combined with the strong inter- 
action between nucleons. The Coulomb interaction does not have a finite 
range, but it is present only in the diagonal channel local potentials Vj~(r). 
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The coupling potentials are derived from combinations of microscopic 
nucleon-nucleon potentials which have a finite range. In this case, for r > R, 
the initial system (1) is written in a uncoupled form. Solutions satisfying the 
condition (21) exist and the method can be applied, but all the definite 
integrals in equation (11) should be calculated from 0 to R; this equation 
(11) is valid when r<R. For r>R the ELP are equal to the local parts of 
the channel potentials. 

We can give a formulation of the Fiedeldey-Mackellar-Coz method 
useful for further applications. Let ~ be the set of all n-channel equations 
like equation (1); f~ff can be defined as the subset of f~, containing the 
systems of n equations with local kernels like equation (8). For every system 
x in f~,, the linear 2"-dimensional space of the solutions of the coupled 
differential equations (1) is attached. For two fixed solutions ~t~(r) and vi(r) 
of the system x, the Fiedeldey-Mackellar-Coz method is an application 
from ~ .  into o t~ 

fL,~x ~ FMC(x) e f~  ~162 

The equivalent local system FMC(x) has two solutions {u~(r)} and 
{w~(r)} with constant Wronksians W[ui, wi] = 1 for every i. 

The set of the n uncoupled systems in this formulation is 

[n'~]" = n', o~ • n', ~ •  n~ ~176 

n times 

Any uncoupled local system does not change when the Fiedeldey procedure 
is applied; therefore 

FMC([f2~~ ") = [n',~ " (22) 

3. THE FESHBACH OPTICAL POTENTIAL 

An interesting topic is the relation between the Fiedeldey method and 
the Feshbach procedure of constructing the optical potential of a coupled 
channel system (Feshbach, 1967). We consider the system 

( d2 l(l+l))~t~(r)-[V,.i(r)-E~]vt~(r ) 
~2 

~0 ~ 

- Uii(r, r')~i(r') dr' 

= y ,  [ v , , , , ( r )  - E,,~,,,,I ~, , , , (r)  + 
m = I...n 0 

Ui,,,(r, r')q,,,,(r') &'} (23) 
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Let G . ( E . ,  r, r ' )  be the Green's function of the nth equation 

( d 2 1 ( l +  l))Gn(En, r,r')-[V..(r)-En] r 2 

fO ~176 r J - Un.(r, r )Vtn(, ) dr'=8(r-r') (24a) 

The nth equation in system (23) can be solved: 

k=n-I f0 ~ yr.(r) = ~  dr' Gn(E., r, r')Vnk(r')~(r') 
=1 

+ ~ dr' dr" G.(E., r, r")Unk(r", r')lf(r') (24b) 
=1 

After replacing ~'. in all equations, we arrive at the optical system, with 
n -  1 equations: 

( d2 l(I+1)) 
r~ v ' , ( r ) -  [ v,,(,') - e , l  q,,(r) 

f0 - Uii(r, r')~i(,") dr' 

= Z f[V'm(r)-- E;6,,,,] %.(,.) 
In = l...n-- 1 k 

m~i 

where the potential Lrik is defined as follows: 

0ik(,', r') = U,~(r, r') + V,-.(r)G(E., r, r') Vnk(r') 

f0 + Vi.(r) dw Gn(En, r, w) Ung(W, r') 

+ ds gin(", s)Gn(En, S, r') Vnk(r') 

;o ;o + ds dw G.(r, s)G.(E., s, w)Unk(w, r') (26) 
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We notice that the initial system (23) of  n equations is reduced to a 
system with n -  1 equations (25). If  we repeat this procedure n -  1 times, we 
find the Feshbach local potential as described by Feshbach (1967). Symbol- 
ically, this reduction of  the rank is expressed by the application 

F: ~ , ~ x ~ F ( x ) e D , - I  (27) 

where F(x) represents the system derived by the Feshbach procedure. The 
exact definition of  this function presupposes the choice of  the pair {p;(r)} 
and { vi(r)}, i=  1 , . . . ,  n. This choice defines uniquely the channel Green's 
functions Gi(Ei, r, r') with the appropriate boundary conditions. The solu- 
tions {/~j(r)} and {v j ( r )} , j=  1 . . . .  , n -  1, of  both systems coincide for the 
first n -  1 channels. 

An interesting property of  the Fiedeldey-Mackellar-Coz method is its 
compatibility with the Feshbach reduction scheme. The following proposi- 
tion is true: 

Proposition 3. For every system x e D ,  and for a given choice of  a pair 
of  solutions {~,-}, { v,} the following relation is true: 

FMC(x)  = FMC(F(x))  (28) 

We consider now the case with nonlocal potentials, i.e., Vi,, = 0, as we 
have shown in (12) that this case is the general one. The first n -  1 solutions 
Vtj(r), j =  1 , . . . ,  n - 1 ,  of  the system (23) (which is a system in f~,) are 
solutions of  the system (25) (which is a system in D,_ j). Consequently, the 
corresponding Wronksians coincide: 

F;(r) =/~i for i=1 . . . . .  n - 1  

It can be seen that 

f0 ~ n--I ,~=, ~Ji,,(r, r ' ) [~ ' (r )v . , (r ' ) -  v:(r)It,,,(r')] dr' 

fo| ' 
= Uim(r, r')[I.l[(r)vm(r ~) - v'(O~,,(r ')]  dr' 

m = I 

+,,~=l dr' ds dw Ui,(r, s)G,(E,,  s, w) 

x U,,,,(w, r')[ll[(r) v,,,(r') - v~(r)l.tm(r')] 

= ~'. Ui,,(r, r ' )[It /(r)v, ,(r ' )-  v/(r)It,,(r')] dr' 
m = | 

From equation (8') we conclude that the ELPs in both cases are the same. 
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An obvious generalization of Proposition 3 is the following corollary: 

Corolla~T. For every system xef~. the following equality is valid: 

FMC(x) = FMC(FP(x)) (29) 

This proposition means that the Fiedeldey-Mackellar-Coz procedure, 
applied to the Feshbach optical potential, creates an ELP which is the same 
as the ELP derived by the (uncoupled) system. We can say that the Feshbach 
and Fiedeldey-Mackellar-Coz procedures are compatible manipulations on 
the differential systems. Thus, the properties of the Feshbach optical poten- 
tials can be used for the study of the properties of the complicated ELPs 
given by equation (17). The Feshbach optical potential has been constructed 
by using the Green's operators: 

1 
a k - - - -  

E~- Hk 

These Green's operators converge to zero for great values of the energies Eg 
or for large values of the angular momenta l; therefore we have the following 
results. 

Proposition 4. The ELPs V~CP(r) given by equation (17) converge to 
the channel potentials Vii(r) when the energies Ei or the angular momenta l 
take great values. 

The properties of the ELPs for a coupled-channel square-well potential 
are under investigation and numerical calculations will be forthcoming. 
These preliminary calculations show that the ELPs are smooth potentials 
without singularities due to the existence of the Wronskians F,-(r) in the 
denominators of equation (17). This smooth character of the ELP of the 
coupled-channel system indicates that the ELP can be used for the study of 
the multichannel problem, but the assumed smoothness of the ELP should 
be proven mathematically. 

4. SUMMARY 

In this paper we study the Fiedeldey-Mackellar-Coz method for the 
coupled-channel case. For every pair of solutions of the coupled-channel 
problem we can define equivalent potentials such that the coupled-channel 
problem with nonlocal potentials is transformed into a coupled problem 
with local potentials. The ELPs in the coupled-channel case depend on the 
boundary conditions imposed on the solutions of the exact problem. In the 
case of the coupling potentials with finite range we can construct one ELP 
for the case of outgoing inelastic wave functions. We give the explicit formula 
for the ELP in the coupled-channel case. The Fiedeldey-Mackellar-Coz 
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method  is a procedure  for t ransforming a coupled-channel  system to an 
uncoupled one. The Feshbach optical potential  me thod  is a procedure  to 
reduce the rank o f  the system. In this paper  we proved that  the Fiedeldey 
method  is related to the Feshbach procedure.  The two methods  can be 
viewed as compat ible  manipulat ions  on differential systems. 
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